terça-feira, 28 de abril de 2009

Critérios de Divisibilidade- Alunos do 6º Ano da Escola Municipal Moema Tinoco

Divisibilidade de números

* Definição

Em diversas situações é preciso saber se um número natural (N) é divisível por outro número natural, sem a necessidade de saber o resultado da operação, apenas para ter a certeza de que realmente os números são divisíveis entre si.

Desta forma podemos definir que o divisor de um número inteiro B é qualquer número inteiro C de tal forma que B = C x N para um número inteiro N qualquer.

Então, é possível indicar o conjunto dos números divisores de um número inteiro B por:

- Quando C é um divisor de N se diz que N é divisível por C.

- O número zero (0) não pode ser divisor de qualquer número.

- O menor divisor de um número inteiro C qualquer é 1.

- O maior divisor de um número inteiro N qualquer é |N|.

- O número 1 é divisor de todos os números inteiros. O número 1 é o divisor universal.

Aqui serão usados exemplos de algumas regras mais conhecidas como critérios de divisibilidade, tais como: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 e 17.

* Critérios de divisibilidade

Abaixo serão listados alguns critérios de divisibilidade mais comuns, bem como exemplos práticos de fixação.

- Divisão por 2

Um certo número é divisível por 2, sempre que o algarismo das unidades forem os números (0,2,4,6 ou 8).

Em resumo: quando o número termina com os números (0,2,4,6,8).

Exemplos de fixação:

O número 410 >>>> é divisível por 2, pois termina em 0, resultado = 205

O número 512 >>>> é divisível por 2, pois termina em 2, resultado = 256

O número 354 >>>> é divisível por 2, pois termina em 4, resultado = 177

O número 786 >>>> é divisível por 2, pois termina em 6, resultado = 393

O número 188 >>>> é divisível por 2, pois termina em 8, resultado = 94

- Divisão por 3

Um número é divisível por 3 quando a soma total dos seus algarismos também for divisível por 3.

Em resumo: Somar todas as partes do número, o resultado desta soma deve ser também divisível por 3.

Exemplos de fixação:

O número 573 >>> soma-se ( 5 + 7 + 3 = 15, que é divisível por 3), então 573÷3 = 191

O número 972 >>> soma-se ( 9 + 7 + 2 = 18, que é divisível por 3), então 972÷3 = 324

O número 10008 >>> soma-se ( 1 + 0 + 0 + 0 + 8 = 9, que é divisível por 3),

então 10008÷3 = 3336

- Divisão por 4

Um número qualquer é considerado divisível por 4, quando a soma dos seus dois últimos algarismos forma um número divisível por 4.

Em resumo: A soma dos dois últimos números deve ser divisível por 4.

Exemplos de fixação:

O número 6596 >>> os dois últimos algarismos 96 é divisível por 4, resultado 6596÷4 = 1649

O número 7844 >>> os dois últimos algarismos 44 é divisível por 4, resultado 7844÷4 = 1961

O número 1556 >>> os dois últimos algarismos 56 é divisível por 4, resultado 1556÷4 = 389

- Divisão por 5

Um número é divisível por 5, todas as vezes que o algarismo das unidades numéricas forem iguais a 0 ou 5.

Em resumo: Todas as vezes que o número terminar com 0 ou 5.

Exemplos de fixação:

O número 1250 >>>> tem sua terminação em 0, resultado 1250÷5 = 250

O número 5555 >>>> tem sua terminação em 5, resultado 5555÷5 = 1111

O número 3650 >>>> tem sua terminação em 0, resultado 3650÷5 = 730

- Divisão por 6

Um número pode ser considerado divisível por 6, quando este for divisível por 2 e por 3 ao mesmo tempo.

Em resumo: O número tem que ser divisível pelo número 2 e 3.

Exemplos de fixação:

O número 36 >>>> temos 36÷2 = 18 e 36÷3 = 12, assim o resultado 36÷6 = 6

O número 72 >>>> temos 72÷2 = 36 e 72÷3 = 24, assim o resultado 72÷6 = 12

O número 84 >>>> temos 84÷2 = 42 e 84÷3 = 28, assim o resultado 84÷6 = 14

- Divisão por 7

Um número é divisível por 7 quando a diferença entre as suas dezenas e o dobro do valor do seu algarismo das unidades é divisível por 7.

Em resumo: Se pega o último algarismo e calcula o seu dobro, diminui este resultado do restante da formação do número.

Exemplos de fixação:

O número 819 >>>> temos 9 x 2 = 18, 81 – 18 = 63 (que é divisível por 7), assim o resultado de 819÷7 = 63

O número 784 >>>> temos 4 x 2 = 8, 78 – 8 = 70 (que é divisível por 7), assim o resultado de 784÷7 = 112

O número 903 >>>> temos 3 x 2 = 6, 90 – 6 = 84 (que é divisível por 7), assim o resultado de 903÷7 = 129

- Divisão por 8

Um certo número é divisível por 8 quando a formação dos seus 03 últimos algarismos formarem um número que seja divisível por 8.

Em resumo: Os 03 últimos números tem que ser divisível por 8.

Exemplos de fixação:

O número 1960 >>>> temos 960÷8 = 120, assim o resultado de 1960÷8 = 245

O número 1400 >>>> temos 400÷8 = 50, assim o resultado de 1400÷8 = 175

- Divisão por 9

Um número é divisível por 9, quando a soma absoluta dos números que o compõem é também divisível por 9.

Em resumo: Somar todas as partes do número, o resultado desta soma deve ser também divisível por 9.

Exemplos de fixação:

O número 5463 >>>> temos (5 + 4 + 6 + 3 = 18, que é divisível por 9), então o resultado é 5463÷9 = 607

O número 2259 >>>> temos (2 + 2 + 5 + 9 = 18, que é divisível por 9), então o resultado é 2259÷9 = 251

- Divisão por 10, 100, 1000, 10000 e sucessivamente

Um número é divisível por 10, 1000 ou 10000 ou tantos “ 0” quantos forem a direita, quando o número tiver sua terminação em “ 0” com suas quantidades respectivas de “ 0”.

Em resumo: O número para ser divisível por “10,100 e etc.”, precisa terminar em “ 0”, com suas quantidades respectivas à direita.

Exemplos de fixação:

O número 100 >>>> termina em “0” é divisível por 10 e por 100, o resultado então fica 100÷10=10, 100÷100=1

O número 1000 >>>> termina em “0” é divisível por 10, 100 e por 1000, o resultado então fica 1000÷10 = 100, 1000÷100 = 10, 1000÷1000 = 1

- Divisão por 11

Um número é divisível por 11, quando a soma absoluta dos algarismos de ordem impar e de ordem par, a partir da direita para a esquerda tiver como diferença o número 11.

Em resumo: Soma-se o número em ordem alternativa da direita para a esquerda e a diferença deve ser 11.

Exemplos de fixação:

O número 14927 ( 1ª soma: 7 + 9 + 1 = 17, 2ª soma : 2 + 4 = 6, então 17 – 6 = 11), assim o resultado 14927÷11 = 1357

O número 1727 ( 1ª soma: 7 + 7 = 14, 2ª soma: 2 + 1 = 3, então 14 – 3 = 11), assim o resultado 1727÷11 = 157

- Divisão por 17

Um número é divisível por 17 quanto o quíntuplo do ultimo algarismo, subtraído do número que não contem este último algarismo, tiver como resultado um número que é dividido por 17. Caso o número obtido ainda for grande, o processo é repetido, até que a divisão de o resultado 17.

Em resumo: Tira-se o último algarismo e multiplica por 5 e subtrai do restante do número sem o respectivo número que foi multiplicado.

O número 19074 >>>> ( 4 x 5 = 20, 1907 – 20 = 1887, 7 x 5 = 35, 188 – 35 = 153, 3 x 5 = 15, 15 -15 = 0), assim 19074÷17=1122

O número 221 >>>> ( 1 x 5 = 5, 22 – 5 = 17), assim 221÷17=13

O número 238 >>>> ( 8 x 5 = 40, 23 – 40 = -17), apesar de ser negativo é divisível por 17, assim 238÷17=14.

3 comentários:

  1. que contas façio professora paça mais difiçio
    raiz quadrada ai sim e uma conta
    legal de resolver por que e façio tam bem
    xau linda beijjoossssss...........
    nu coração..... xau......

    ResponderExcluir
  2. ja entrei ta bom professora
    purisso eu digo so mais eu niguem e melhor de que eu para saber fazer isso que eu fiz xau professora tenha um bom final de semana
    xauu linda.....................

    ResponderExcluir
  3. professora ter que fim que encotrei seu blog graças a rafael....beijos...Rayssa 8 ano A...la do moema

    ResponderExcluir